CRYSTALS, INSTANTONS AND QUANTUM GEOMETRY

Richard Szabo

Heriot–Watt University, Edinburgh
Maxwell Institute for Mathematical Sciences

Supersymmetry in Integrable Systems Yerevan, Armenia 2010

Melting crystal model in 3D

(Okounkov, Reshetikhin & Vafa '06)

- ▶ Unit cube at $(I, J, K) \in \mathbb{Z}^3_{\geq 0} \subset \mathbb{R}^3$ evaporates \iff all $(i \leq I, j \leq J, k \leq K)$ already evaporated
- Removing each atom from corner of crystal contributes $q = e^{-\mu/T}$ to Boltzmann weight

Plane partitions = 3D Young diagrams

Piling $\pi_{i,j}$ cubes vertically at position (i,j,0) gives rectangular array:

$$\pi = (\pi_{i,j})$$
 such that $\pi_{i,j} \geq \pi_{i+1,j}$, $\pi_{i,j} \geq \pi_{i,j+1}$

[Recall: ordinary partition = Young diagram $\lambda = (\lambda_1, \lambda_2, ...)$, $\lambda_i \geq \lambda_{i+1} \geq 0$, $\lambda_i = \text{length of } i\text{-th row}$]

Statistical mechanics of crystal melting

Canonical ensemble in which each π has energy $\propto |\pi| = \sum_{i,j} \pi_{i,j} = \text{total number of cubes:}$

$$Z_{\mathbb{C}^3} := \sum_{\pi} q^{|\pi|}$$

$$= \sum_{N=0}^{\infty} pp(N) q^N$$

$$= \prod_{n=1}^{\infty} \frac{1}{(1-q^n)^n} =: M(q) \qquad \text{(MacMahon function)}$$

 $pp(N) = \text{number of plane partitions } \pi \text{ with } |\pi| = N$

Generalizations — Calabi-Yau crystals

Trivalent planar graph Γ with:

- (1) 3D partition π_v at each vertex v
- (2) 2D partition λ_e at each edge e (asymptotics of π_v)

"Topological string" partition function on CY_3 X with toric diagram Γ (Aganagic *et al.* '05; Maulik *et al.* '06):

$$Z_{X} = \sum_{\substack{ ext{Young tableaux} \\ \lambda_{e}}} \prod_{\substack{ ext{edges e} \\ \lambda_{e}}} Q_{e}^{|\lambda_{e}|} \prod_{\substack{ ext{vertices} \\ v=(e_{1},e_{2},e_{3})}} M_{\lambda_{e_{1}},\lambda_{e_{2}},\lambda_{e_{3}}}(q)$$

Generating function for plane partitions π with boundaries λ, μ, ν :

$$M_{\lambda,\mu,
u}(q) = \sum_{\pi:\partial\pi=(\lambda,\mu,
u)} q^{|\pi|}$$

Example — Conifold

$$egin{array}{lcl} Z_{
m conifold} &=& \displaystyle\sum_{\lambda} \, M_{\emptyset,\emptyset,\lambda}(q) \, M_{\emptyset,\emptyset,\lambda}(q) \, Q^{|\lambda|} \ &=& \displaystyle\sum_{\pi} \, q^{|\pi_{
u}| + \sum_{(i,j) \in \lambda} \, (i+j+1)} \, Q^{|\lambda|} \, = \, M(q)^2 \, M(Q,q)^{-1} \end{array}$$

$$M(Q,q) = \prod_{n=1}^{\infty} \frac{1}{(1-Qq^n)^n}$$
 counts weighted plane partitions

Free fermion representation

(Nakatsu & Takasaki '09; Sulkowski '09)

► Complex fermion field:

$$\psi(z) = \sum_{m \in \mathbb{Z}} \psi_m z^{-m-1}, \qquad \{\psi_m, \psi_n^*\} = \delta_{m+n,0}$$

Fock space spanned by states labelled by Young tableaux; use modes α_n of bosonized field $\phi = : \psi(z) \, \psi^*(z) :$ to define vertex operators:

$$\Gamma_{\pm}(x) = \exp\left(\sum_{n\geq 0} \frac{x^n}{n} \alpha_{\pm n}\right), \qquad [\alpha_m, \alpha_n] = m \delta_{m+n,0}$$

▶ Gives fermionic representation:

$$Z_{\mathbb{C}^3} = \langle 0|\cdots\Gamma_+(q^2)\Gamma_+(q)\Gamma_+(1)\Gamma_-(1)\Gamma_-(q)\Gamma_-(q^2)\cdots|0\rangle$$

▶ Identifies Z_X as τ -function of 1D Toda hierarchy

Unitary one-matrix models

(Ooguri, Sulkowski & Yamazaki '10; RS & Tierz '10)

$$egin{array}{lcl} Z_{\mathbb{C}^3} &=& \int_{U(\infty)} \,\mathrm{d} U \, \det \Theta(U|q) \ \\ Z_{\mathrm{conifold}} &=& \int_{U(\infty)} \,\mathrm{d} U \, \det \Big(rac{\Theta(U|q)}{\Theta(Q\,U|q)} \, \prod_{n=1}^{\infty} \, ig(1 + Q^{-1}\,U^{-1}\,q^nig) \, ig) \ \\ \Theta(u|q) &=& \sum_{i=-\infty}^{\infty} \, q^{j^2/2} \, u^i \end{array}$$

Proof: Express $M_{\lambda,\mu,\nu}(q)$ as sum over **all** Young diagrams λ of "skew Schur functions", use Gessel's theorem to write as Toeplitz determinant

Chern-Simons gauge theory

▶ Chern–Simons theory on 3-manifold M with gauge group U(N):

$$Z_{\text{CS}}^{N}(M) = \int DA \ e^{i S_{\text{CS}}[A]}$$

$$S_{\text{CS}}[A] = \frac{k}{4\pi} \int_{M} \text{Tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right)$$

- ▶ On $M = S^3$ related to N-particle Sutherland model (RS & Tierz '10)
- By means of Hopf fibration $S^3 \longrightarrow S^2$ equivalent to "q-deformed" Yang–Mills theory on S^2 ; generalizes to other Seifert 3-manifolds $M \longrightarrow \Sigma$ (Beasely & Witten '05; Caporaso et al. '06; Blau & Thompson '06; Griguolo et al. '07)

Finite N crystal model = Chern-Simons matrix model

► On $M = S^3$ equivalent to Stieltjes–Wigert matrix model (Mariño '04; Aganagic et al. '04; Tierz '04):

$$Z_{\text{CS}}^{N}(S^{3}) = \int_{u(N)} dH \, e^{-\operatorname{Tr} \log^{2} H/2g_{s}} = \prod_{j=1}^{N-1} (1 - q^{j})^{N-j}$$
$$q = e^{-g_{s}} = e^{-2\pi i/(k+N)}$$

► Undetermined moment problem also described by unitary matrix model (Okuda '05):

$$Z_{\mathrm{CS}}^{N}(S^{3}) = \int_{U(N)} \mathrm{d}U \, \det\Theta(U|q)$$

► Hence: $Z_{\mathbb{C}^3} = \lim_{N \to \infty} Z_{\mathrm{CS}}^N(S^3)$

Kähler quantum gravity

(Iqbal et al. '06)

- ▶ $X = \text{complex manifold, } \dim_{\mathbb{C}}(X) = 3$, with nondegenerate Kähler (1,1)-form ω , $d\omega = 0$ (usually toric CY₃)
- Gravitational path integral:

$$Z_X \; = \; \sum_{\substack{\mathrm{quantized} \ \omega}} \; \mathrm{e}^{\,-S} \; , \qquad S \; = \; rac{1}{g_s^2} \, \int_X \, rac{1}{3!} \, \omega \wedge \omega \wedge \omega$$

▶ Decompose "macroscopic" ω into "background" ω_0 and curvature F_A of holomorphic line bundle over X:

$$\omega = \omega_0 + g_s F_A , \qquad \int_{\beta} F_A = 0 \quad \forall \beta \in H_2(X, \mathbb{Z})$$

Kähler quantum gravity

Gives action:

$$S = \frac{1}{g_s^2} \frac{1}{3!} \int_X \omega_0^3 + \frac{1}{2} \int_X F_A \wedge F_A \wedge \omega_0 + g_s \int_X \frac{1}{3!} F_A \wedge F_A \wedge F_A$$

Statistical sum:

$$Z_X = \sum_{\substack{\text{line} \\ \text{bundles}}} q^{\text{ch}_3} \prod_{i=1}^{b_2(X)} (Q_i)^{\int_{C_i} \text{ch}_2}$$

$$q = e^{-g_s}$$
, $Q_i = e^{-\int_{S_i} \omega_0}$, $S_i \in H_2(X, \mathbb{Z})$, $C_i \in H_4(X, \mathbb{Z})$

▶ Problem: Fluctuation condition on F_A implies $ch_2 = ch_3 = 0$!

Quantization of geometry

- ▶ Take F_A to correspond to **singular** U(1) gauge field A on X
- Instanton solutions of gauge theory on noncommutative deformation \mathbb{C}^3_{θ} described in terms of **ideals** \mathcal{I} in polynomial ring $\mathbb{C}[z^1,z^2,z^3]$; correspond locally to crystalline configurations on each patch of X
- Become non-singular on blow-up:

(Igbal et al. '06)

$$X \longrightarrow \widehat{X}$$
 (Quantum Foam)

► Hence molten crystal gives discretization of geometry of X at Planck scale; each atom of crystal is a fundamental unit of the geometry

6D cohomological gauge theory — Instantons

(Iqbal et al. '06; Cirafici, Sinkovics & RS '09)

▶ Topological twist of maximally SUSY-YM in 6D

 ⇔ dimensional reduction of SYM in 10D on X:

$$S_{\text{bos}} = \frac{1}{2} \int_{X} \left(d_{A} \Phi \wedge * d_{A} \overline{\Phi} + \left| F_{A}^{2,0} \right|^{2} + \left| F_{A}^{1,1} \right|^{2} \right)$$
$$+ \frac{1}{2} \int_{X} \left(F_{A} \wedge F_{A} \wedge \omega_{0} + \frac{g_{s}}{3} F_{A} \wedge F_{A} \wedge F_{A} \right)$$

Gauge theory localizes at BRST fixed points:

$$F_A^{2,0} = 0 = F_A^{0,2}, \qquad F_A^{1,1} \wedge \omega_0 \wedge \omega_0 = 0$$

▶ Donaldson-Uhlenbeck-Yau equations: BPS solutions ≡ (generalized) instantons

6D cohomological gauge theory — Localization

▶ Localization onto instanton moduli space \mathcal{M} :

$$Z_X = \int_{\mathcal{M}} e(\mathcal{N})$$

 $e(\mathcal{N})$ = Euler characteristic class of antighost bundle \mathcal{N}

- ▶ Regularize IR singularities on \mathcal{M} for $X=\mathbb{C}^3$ by putting gauge theory in " Ω -background" (Nekrasov '04); Since $\operatorname{ch}_2=0$, saturates Z_X by pointlike instantons
- ▶ Resolve small instanton UV singularities of \mathcal{M} on $X = \mathbb{C}^3 \cong \mathbb{R}^6 \longrightarrow \mathbb{R}^6_\theta$:

$$\left[x^{i}, x^{j}\right] = i \theta^{ij}$$

Noncommutative gauge theory

▶ Represent $z^a = x^{2a-1} - ix^{2a}$, $\bar{z}^{\bar{a}} = x^{2a-1} + ix^{2a}$, on Fock space:

$$\mathcal{H} = \mathbb{C}\big[\bar{z}^{\bar{1}}, \bar{z}^{\bar{2}}, \bar{z}^{\bar{3}}\big]|0,0,0\rangle = \bigoplus_{i,j,k=0}^{\infty} \mathbb{C}|i,j,k\rangle$$

Covariant coordinates:

$$X^{i} = x^{i} + i \theta^{ij} A_{j}$$
, $Z^{a} = \frac{1}{\sqrt{2}} (X^{2a-1} + i X^{2a}) (a = 1, 2, 3)$

▶ Instanton equations become algebraic equations:

$$[Z^a, Z^b] = 0, \qquad [Z^a, \bar{Z}^{\bar{a}}] = 3$$

▶ Vacuum $F_A = 0$ given by harmonic oscillator algebra: $Z^a = z^a$

Noncommutative instantons

▶ For general solution, fix $n \ge 1$ and let U_n be a partial isometry on \mathcal{H} projecting out all states $|i,j,k\rangle$ with i+j+k < n:

$$U_n^{\dagger} U_n = 1 - \Pi_n , \quad U_n U_n^{\dagger} = 1 , \quad \Pi_n = \sum_{j+i+k < n} |i,j,k\rangle\langle i,j,k|$$

- Ansatz: $Z^a = U_n z^a f(N) U_n^{\dagger}$, $N = \bar{z}^{\bar{a}} z^a$
- ► Topological charge:

$$\ell(n) = \mathrm{ch}_3 = -\frac{\mathrm{i}}{6} \operatorname{Tr}_{\mathcal{H}}(F_A \wedge F_A \wedge F_A) = \frac{1}{6} n(n+1)(n+2)$$

Number of states in \mathcal{H} with N < n (removed by U_n)

Instanton contributions

▶ U_n identifies full Fock space $\mathcal{H} = \mathbb{C}\big[\bar{z}^{\bar{1}}, \bar{z}^{\bar{2}}, \bar{z}^{\bar{3}}\big]|0,0,0\rangle$ with subspace $\mathcal{H}_{\mathcal{I}} = \bigoplus_{\zeta \in \mathcal{I}} f(\bar{z}^{\bar{1}}, \bar{z}^{\bar{2}}, \bar{z}^{\bar{3}})|0,0,0\rangle$:

$$\mathcal{I} = \mathbb{C}\langle w_1^i w_2^j w_3^k \mid i+j+k \geq n \rangle$$

▶ Defines plane partition with $|\pi| = \ell(n)$ boxes:

$$\pi \ = \ \left\{ (i,j,k) \ \big| \ i,j,k \geq 1 \ , \ w_1^{i-1} \, w_2^{j-1} \, w_3^{k-1} \notin \mathcal{I} \right\}$$

- ▶ Instantons sit on top of each other at origin of \mathbb{C}^3 , and along coordinate axes with asymptotes to 4D instantons
- ▶ Up to perturbative contributions $\pi = \emptyset$, reproduces MacMahon function $Z_{\mathbb{C}^3} = M(q)$ with $q = \mathrm{e}^{-g_s}$

Melting crystal model in 2D

(Cirafici, Kashani-Poor & RS '09)

- $\blacktriangleright \ \, \{\infty \mbox{ Young tableau}\} \ \longleftrightarrow \ \, \mathbb{Z}^2_{\geq 0} \ \, \times \ \, \{\mbox{finite Young tableau}\}$
- ► Leads to integrable Heisenberg XXZ ferromagnet (Dijkgraaf, Orlando & Reffert '09)

Statistical mechanics

▶ Partition function on bivalent planar graph Γ:

$$Z_{ ext{crystal}}(X) \; = \; \sum_{\lambda_e} \; \prod_{ ext{edges } e} \; G_{\lambda_e}(q, Q_e) \; \prod_{\substack{ ext{vertices} \ v = (e_1, e_2)}} V_{\lambda_{e_1}, \lambda_{e_2}}(q)$$

$$V_{\lambda_{e_1},\lambda_{e_2}}(q) = \hat{\eta}(q)^{-1} \, q^{-\lambda_{e_1} \, \lambda_{e_2}} \quad , \quad G_{\lambda_e}(q,Q_e) = q^{a_e \, rac{\lambda_e \, (\lambda_e \, -1)}{2} + \lambda_e} \, Q_e^{\lambda_e}$$

- ▶ Euler's formula: $\hat{\eta}(q)^{-1} = \prod_{n=1}^{\infty} \frac{1}{1-q^n} = \sum_{N=0}^{\infty} p(N) q^N$ $p(N) = \text{number of partitions } \lambda = (\lambda_1, \lambda_2, \dots) \text{ (2D Young tableaux) of degree } |\lambda| = \sum_i \lambda_i = N$
- Question: Is there a 4D "topological string theory" that reproduces this counting?

$\mathcal{N}=4$ supersymmetric Yang-Mills theory in 4D

(Vafa & Witten '94)

 $\mathcal{N}=4$ Vafa–Witten topologically twisted U(1) Yang–Mills on Kähler 4-manifold X, with instanton and monopole charges:

$$n = \frac{1}{8\pi^2} \int_X F_A \wedge F_A , \qquad u_i = \frac{1}{2\pi} \int_{S_i} F_A$$

- Path integral: $Z_{\text{gauge}}(X) = \sum_{n,u_i} \Omega(n,u_i) \ q^n \prod_{i=1}^{X} Q_i^{u_i}$ $\Omega(n,u_i) = \text{Witten index} \equiv \text{Euler character of moduli space of } U(1) \text{ instantons on } X \text{ (anti-self-duality } \star F_A = -F_A)$
- Conjectural exact expression on Hirzebruch–Jung spaces (Fucito, Morales & Poghossian '06; Griguolo et al. '07)

Example — ALE spaces

▶ Resolution of A_n singularity $\mathbb{C}^2/\mathbb{Z}_{n+1}$:

- ► Melting crystal: $Z_{\text{crystal}}(A_1) = \frac{1}{\hat{\eta}(q)^2} \sum_{\lambda=0}^{\infty} q^{\lambda^2} Q^{\lambda}$
- ► Gauge theory: $Z_{\text{gauge}}(A_1) = \frac{1}{\hat{\eta}(q)^2} \sum_{u=-\infty}^{\infty} q^{-\frac{1}{4}u^2} Q^u$
- Problems related but not identical in 4D!