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Melting crystal model in 3D

(Okounkov, Reshetikhin & Vafa '06)

> Unit cube at (/,J,K) € Z3, C R® evaporates
< all (i<l,j<J,k<K) already evaporated

» Removing each atom from corner of crystal contributes
g = e T to Boltzmann weight



Plane partitions = 3D Young diagrams

Piling m;; cubes vertically at position (i,j,0) gives rectangular array:
T = (71','",') such that i j > i1, 5 Tij > i j+1

[Recall: ordinary partition = Young diagram A = (A1, A2,...),
Ai > A1 >0, A = length of i-th I’OW]



Statistical mechanics of crystal melting

Canonical ensemble in which each 7 has energy

x |7| = Z mij = total number of cubes:
ij>1
Zo = Yo~
= pp(N) g"
N=0
= H 7 = M(q) (MacMahon function)
n=1 (]' —-4q )

pp(N) = number of plane partitions 7 with |7|] = N



Generalizations — Calabi—Yau crystals

Trivalent planar graph I with:

(1) 3D partition m, at each vertex v

(2) 2D partition . at each edge e (asymptotics of )

“Topological string” partition function on CY3 X with toric diagram T
(Aganagic et al. '05; Maulik et al. '06):

Zx = > IT e I M aoa.(@)

Young tableaux edges e vertices
Ae v=(e1,e,e3)

Generating function for plane partitions 7 with boundaries A, p, v:

I\/I,\,H,V(CI) = Z qlﬂ

o=\, p,v)



Example — Conifold

c3 conifold

conlfold Z M@ 0, )\ M@ 0, )\( ) Q‘Al

> g R (45 Q- = M(q)? M(Q, q) !

Ty

it 1
M(Q,q) = H m counts weighted plane partitions

n=1



Free fermion representation

(Nakatsu & Takasaki '09; Sulkowski '09)
» Complex fermion field:
—m—1
1b(z) = Z Ym 2z m ) {@[}maw:} = 5m+n,0
meZ

» Fock space spanned by states labelled by Young tableaux;
use modes «, of bosonized field ¢ = :1(z)y*(z): to define
vertex operators:

XN
ri(X) = €exp ( Z 7 ain) s [amaan] = m5m+n,0
n>0

» Gives fermionic representation:

Zes = (0] T(@) T(q) T+ () T—(1)T_(q) T—(¢?)---|0)

» Identifies Zx as 7-function of 1D Toda hierarchy



Unitary one-matrix models

(Ooguri, Sulkowski & Yamazaki '10; RS & Tierz '10)

Zes = / dU det©(U|q)
U(o0)

_ oUlg) T4
Zeomtold = /U(oo)dUdet( Sery 11 1+Qug))

O(ulq) = Z ¢

1_700

Proof: Express My .. (q) as sum over all Young diagrams A\ of “skew
Schur functions”, use Gessel's theorem to write as Toeplitz determinant



Chern—-Simons gauge theory

» Chern—Simons theory on 3-manifold M with gauge group U(N):

28(m) = [ DA eise
k 2
Scs[A] = E MTr(A/\dA+§A/\A/\A)

» On M = S related to N-particle Sutherland model (RS & Tierz '10)

» By means of Hopf fibration S3 — S? equivalent to
“g-deformed” Yang—Mills theory on S?;
generalizes to other Seifert 3-manifolds M — X
(Beasely & Witten '05; Caporaso et al. '06; Blau & Thompson '06; Griguolo et al. '07)



Finite N crystal model = Chern—Simons matrix model

» On M = S3 equivalent to Stieltjes—Wigert matrix model
(Marifio '04; Aganagic et al. '04; Tierz '04):

N—-1
ZéVS(53) _ / dH e—TrIogZH/Qgs _ H (1_qj)N—J
u(N) j=1
0—8& — o-2mi/(ktN)

q

» Undetermined moment problem also described by unitary matrix
model (Okuda '05):

ZN(5%) = /U(N) dU det ©(Ulq)

» Hence: Zgs = Nlim z8(5%)



Kahler quantum gravity

(Igbal et al. '06)

» X = complex manifold, dim¢(X) = 3, with nondegenerate Kahler
(1,1)-form w, dw = 0 (usually toric CY3)

» Gravitational path integral:

1 1
Zx = = 5:—/—/\/\
X Z e gs2X3!www

quantized
w

» Decompose “macroscopic” w into “background” wy and
curvature Fa of holomorphic line bundle over X:

w = wo+gsFa, /FA = 0 V0eH)(X,Z)
B



Kahler quantum gravity

» Gives action:

11 3 1 1
S = EzaAwo+§AFAAFAAw0+gS/)(aFA/\FA/\FA

» Statistical sum:

ba(X) .
o= Y @™ ] (@)™
line i=1

bundles

g=e& Q = e J5° S ecH(X,Z), CeH(X, L)

» Problem: Fluctuation condition on Fp, implies ch, = chy = 0!



Quantization of geometry

Take Fa to correspond to singular U(1) gauge field A on X

Instanton solutions of gauge theory on noncommutative deformation
C? described in terms of ideals Z in polynomial ring C[z},Z?, 2%];
correspond locally to crystalline configurations on each patch of X

Become non-singular on blow-up:

X — X (Quantum Foam)
(lgbal et al. '06)
Hence molten crystal gives discretization of geometry of X at

Planck scale;
each atom of crystal is a fundamental unit of the geometry



6D cohomological gauge theory — Instantons

(Igbal et al. '06; Cirafici, Sinkovics & RS '09)

» Topological twist of maximally SUSY-YM in 6D
<= dimensional reduction of SYM in 10D on X:
1 —_
Shos = 5 / (aa® A 5da® + P2+ |FAM7)
X

1
+—/(FA/\FA/\UJ0+5FA/\FA/\FA)
2 Jx 3

» Gauge theory localizes at BRST fixed points:

FZ’O = 0 = F/g’z, FAl’l/\wo/\wo = 0

» Donaldson—Uhlenbeck—Yau equations:
BPS solutions = (generalized) instantons



6D cohomological gauge theory — Localization

» Localization onto instanton moduli space M:

Z = /M (V)

e(N) = Euler characteristic class of antighost bundle N

» Regularize IR singularities on M for X = C3 by putting gauge
theory in "Q-background” (Nekrasov '04);
Since ch, = 0, saturates Zx by pointlike instantons

» Resolve small instanton UV singularities of M on
X = C*=R° — RS:

[xi, xj} = if¥



Noncommutative gauge theory

= x%271 4+ ix?2, on Fock space:

» Represent z7 = x
H = C[z1,2%,2%)0,0,0) = P Cli.j.k)
i k=0

» Covariant coordinates:

77 = L (XP 4 iX%) (a=1,2,3)

X = X' +107A;, 7

» Instanton equations become algebraic equations:
(z2,2°] =0, [2°,2°] =3

» Vacuum F4 = 0 given by harmonic oscillator algebra: 77 = z

a



Noncommutative instantons

» For general solution, fix n>1 and let U, be a partial isometry on
H projecting out all states |i,j, k) with i+j+k < n:

UlUp = 1=M,, UyUl =1, Ny = Y i, k){i.j k|
i+j+k<n
» Ansatz: Z? = U,z f(N) U] , N = z227°

» Topological charge:

{(n) = chs = —% Try(FaAFaAFa) = %n(n+1)(n+2)

Number of states in H with N < n (removed by U,)



Instanton contributions

U, identifies full Fock space H = C[z!, 22, 2%]10,0,0) with

subspace Hy = @ f(Zi, 72, 2°)[0,0,0):
feT

7 = (C<W{M/£W3I( | i+j+k=>n)
Defines plane partition with |w| = £(n) boxes:

= {(i,j,k) | ij, k=1, wiTtw) 1¢I}

Instantons sit on top of each other at origin of C3, and along
coordinate axes with asymptotes to 4D instantons

Up to perturbative contributions © = (), reproduces MacMahon
function Zes = M(q) with g = e ™%



Melting crystal model in 2D

(Cirafici, Kashani-Poor & RS '09)

)\i+1
—_

» {oo Young tableau} «— Z2, x {finite Young tableau}

b

> Leads to integrable Heisenberg XXZ ferromagnet
(Dijkgraaf, Orlando & Reffert '09)



Statistical mechanics

» Partition function on bivalent planar graph T:

Zcrystal(X) = Z H G)\e (qv Qe) H V)\el ey (q)

Ae edges e vertices
v=(e1,e)
A N—1 = Ae Al ae 2eCe= iy, i,
Vagao (@) = (@) g %2 Gy (g, Q) = g* 2 Q;
oo o0
» Euler's formula:  #( H p(N) gV

p(N) = number of part|t|ons )\ ( /\2,. ) (2D Young
tableaux) of degree |A| = > . A\ = N

» Question: Is there a 4D “topological string theory” that reproduces
this counting?



N = 4 supersymmetric Yang—Mills theory in 4D

(Vafa & Witten '94)

» N = 4 Vafa—Witten topologically twisted U(1) Yang—Mills on
Kahler 4-manifold X, with instanton and monopole charges:

1 1
— — [ FanF = — | F
n 87T2/XA A, U 2r Js 4

ba(X)
> Path integral:  Zgauge(X Z Q(n,u;) q" H Q"

n,u;
Q(n, u;) = Witten index = Euler character of moduI| space of

U(1) instantons on X (anti-self-duality xFa = —Fp)

» Conjectural exact expression on Hirzebruch—Jung spaces

(Fucito, Morales & Poghossian '06; Griguolo et al. '07)



Example — ALE spaces

» Resolution of A, singularity C?/Z,1:

1 oo
> Melting crystal:  Zerystal(A1) = w5 Z q)‘Z Q
(a)? =
1 > 1,2
> Gauge theory: Zgauge(A1) = AP Z g+ v Qu

» Problems related but not identical in 4D!



