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D’Hoker, Vinet PRL 55, 1043 (1985) “dyon” :

H1 =

(
−

π2

2
+
q2

2

(
1−

1

r

)2
)

︸ ︷︷ ︸
H0

12 − q
σ · r
r3

, (1)

π = −iD; D = ∇−ieA, ∇×eA = q
r

r3
. Spin 1/2

particle with anomalous gyrom. ratio 4 in com-

bined field of Dirac monopole + scalar poten-

tial V = q2

2

(
1− 1

r

)2
. DV find

o(3)⊕ o(3)⊕ o(3) (2)

dynamical symmetry, generated by

J = r× π − q
r

r︸ ︷︷ ︸
L0

+
σ

2
ang mom (3)

+ “Runge-Lenz” vector KDV

+ “spin-like” vector Ω.

Bound states for E < q2/2. H-type spectrum

Ep =
q2

2

(
1−

(q
p

)2)
, p = |q|, |q|+ 1, . . .. (4)

p > |q| i.e. have degeneracy 2(p2 − q2).

p = |q| i.e. E = 0 ground state has degeneracy

2|q|.
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• ORIGIN OF DYNAMICAL SYMMETRY ?

McIntosh-Cisneros, Zwanziger 1968 : scalar

Hamiltonian

H0 =
π2

2
+
q2

2

(
1−

1

r

)2
(5)

π = −iD; D = ∇− ieA,∇×eA = q
r

r3
monopole.

q (half)integer. Fine-tuned inverse-square term

q2/2r2 cancels effect of monopole  

H0 = −
1

2

(
∂r +

1

r

)2
+

L2
0

2r2
+
q2

2
−
q2

r
(6)

where L0 = r×π−qr̂ conserved orbital angular

momentum  H-atom-type spectrum

Ep =
q2

2

(
1−

q2

p2

)
, p = |q|+ 1, . . .. (7)

Degeneracy half of that of D-V ,

p2 − q2

[= (p+ |q|)(p− |q|) integer !]
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Kepler-type dynamical symmetry

L0 = r× π − q r̂ ang mom

K0 = 1
2

(
π × L0 − L0 × π

)
− q2 r̂

Runge-Lenz
(8)

Dividing K0 by
√

(q2 − 2H) yields

o(4) e(3) o(3,1) (9)

dynamical symmetry, depending on energy be-

ing smaller/equal/larger as q2/2.

• For bound motions

o(4) ≈ o(3)⊕ o(3)

⇒ spectrum (7) from representation theory.

• For scattered motions o(3,1) S-matrix Zwanziger
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• PHYSICAL INTERPRETATION ?

NR limit of Dirac eqn.  Pauli eqn. for spin

1/2 part in Yang-Mills-Higgs field : Di = ∂i −
ie[Ai, ·],

i∂tψ = Hψ ≡ (10)

1
2m

(
π2 + (ΦaTa)2 + σ · (Ba + DΦa +Aa0)Ta

)
ψ

SD ’t Hooft-Polyakov monopoles

SU(2) monopole (Φ,A): static, magnetic (A0 =

0) solution of Bogomolny eqn

DΦ = B (Bi =
1

2
εijkFjk). (11)

Finite-energy condition |Φ| → 1, |r| → ∞  
asymptotic Higgs defines mapping S2∞ → S2.

Winding number m = [Φ] ∈ π2(S
2) ≈ Z ≡

topological charge.

Putting A4 = Φ, static, magnetic 3D YMH

(Φ,A) can be viewed as pure YM (Aµ) in R4.

Bogomolny eqn (11) becomes self-duality

Fij =
1

2
εijklF

kl. (12)
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Chiral SUSY of Dirac operator

Dirac operator [cf. Wipf,Ivanov . . . ]

D
/

= γµDµ, (13)

where γµ Dirac matrices on R4.

D
/

= −
i√
2

(
0 Q†

Q 0

)
=

(
0 Φ12 − iσ · π

Φ12 + iσ · π 0

)

−
1

2
D
/2

=

(
Q†Q 0
0 QQ†

)
. (14)

Straightforward:

2Q†Q = Φ2 −D2 − σ · (DΦ+B)

2QQ† = Φ2 −D2 − σ · (DΦ−B)

For SD monopole B = DΦ, thus

Q†Q = 1
2(Φ

2 −D2)− σ ·B = H1

QQ† = 1
2(Φ

2 −D2) = H0.
(15)

Hamiltonian H=

−
1

2
D
/2

=

(
Q†Q 0
0 QQ†

)
=

(
H1 0
0 H0

)
. (16)

H1, H0 describe spin 1
2 particles with anoma-

lous gyromagnetic ratios g = 4 and g = 0.
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Total Hilbert space decomposed into “upper”

and “lower” components,

H = H1 ⊕H0 (17)

eigensectors of chirality operator

Γ =

(
−1 0
0 1

)
, Γ

∣∣∣∣
H1

= −12, Γ
∣∣∣∣
H0

= 12 (18)

Unitary operator

U = Q
1

√
H1

: H1 →H0, (19)

U† = U−1 =
1

√
H1

Q† : H0 →H1 (20)

U†H0U =

 1√
Q†Q

Q†

(QQ†)
Q 1√

Q†Q

 = Q†Q = H1,

i.e., U, U† intertwine H0 and H1,

U†H0U = H1, UH1U
† = H0. (21)
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E0 = 0

E1

E2

Ep

...

H0H1

U

U†

The Hilbert space of a SUSY QM system splits into

the direct sum of two supbspaces. The energy levels

come in pairs, intertwined by an unitary transformation

U . One of the sectors may have a zero-energy ground

state. Its multiplicity is counted by Atiyah-Singer index

theorem.
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If ψ(1) is eigenvector of H1,

H1ψ
(1) = Eψ(1),

then, for ψ(0) = Qψ(1),

H0ψ
(0) = (QQ†)(Qψ(1)) =

Q (Q†Q)︸ ︷︷ ︸
H1

(ψ(1)) = E(Qψ(1)) = Eψ(0),

i.e., ψ(0) = Qψ(1) is eigenvector of H0 with

same eigenvalue E, provided Qψ(1) 6= 0.

Nonzero energy levels come in pairs.

Qψ
(1)
0 = 0 ⇔ D

/ ψ
(1)
0

0

 = 0. (22)

# solutions of (22) is Atiyah-Singer (AS) in-

dex.

THM AS index only depends on topology and

not on gauge field. For SD monopole & spin

1/2, AS index is em, topological charge.
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Exporting symmetries

Let K0 constant of motion for H0 dynamics,
[H0,K0] = 0.

[H1, Q
†K0Q] = [Q†Q,Q†K0Q] =

Q†
(
[QQ†,K0]

)
Q = Q†

(
[H0,K0]

)
Q = 0

i.e.

K1 = U†K0U (23)

conserved for H1 : [H1,K1] = 0.

Example: “lower component” of D’H-V, H012,
has g = 0  spin uncoupled :

S0 =
1

2
σ (24)

trivially conserved.

S1 = U†S0U = (25)

−
1

2H1

(
1

2
(π2 −Φ2)σ + Φ(π × σ)− (σ · π)π

)
︸ ︷︷ ︸

Ω

conserved for H1. (Ω is that of D-V.)

N.B. mixing bosonic and supersymmetries yields
superalgebras.
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Bogomolny-Prasad-Sommerfeld case

BPS monopole “hedgehog”

Φa = −
xa

r

(
coth r −

1

r

)
, Aai = εaik

xa

r2

(
1−

r

sinh r

)
.

m = 1. Manifest spherical symmetry  con-

served total angular momentum, J . UJU† = J

invariant.

For large distances:

Φa → −
xa

r

(
1−

1

r

)
, Aai → εaik

xa

r2
.

Electric charge operator

Qem = −
xa

r
Ta, (26)

where Ta generates su(2). Electric charge

QemΨ = qΨ, [Qem, H
∞] = 0 (27)

electric charge asymptotically conserved .

H1 → HDV
1 , H0 → HMICZ

0 12 (28)
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In this limit MICZ Runge-Lenz K0 conserved.

K1 = U†(K012)U , i.e., K1 =

K012 + π × σ +
(
q

r
−
q

2

)
σ − (σ ·B)r− q

Ω

2H1

conserved for H1.

N.B. D-V find KDV = K1 + q
Ω

2H1
.

All 3 conserved vectors of D-V recovered by “exporting” from “lower” sector.
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Spectrum of H0 (q = 1/2). No p = 1/2 state for j = 0.

Spectrum of H1 (q = 1/2). For p = 1/2, j = 0 one has

zero-energy ground state .
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GENERAL PHILOSOPHY

SUSY ALLOWS TO DESCRIBE

“COMPLICATED” SYSTEMS

BY “EXPORTING” SIMPLE ONES

E0 = 0

E1

E2

Ep

...

H0H1

U

U†

SYMMETRIES OF CAN ALSO BE
”EXPORTED” TO “COMPLICATED”

SECTOR.

BOSONIC SYMMETRIES MIX WITH
SUPERSYMMETRIES TO YIELD

SUPERALGEBRAS

N.B. may or may not be related to BOSONS
& FERMIONS
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Dirac & DJT particles in plane

Massive relativistic spinning particles in the plane :

• Dirac: spin 1/2

D b
a ψb ≡ (Pµγ

µ −m1) b
a ψb = 0 (29)

where ψ = (ψa) 2-component Dirac spinor. Pla-
nar Dirac [Pauli] matrices

J−0 =

(
1 0
0 −1

)
, J−1 =

(
0 1
−1 0

)
, J−2 =

(
0 i
i 0

)
generate spin 1/2 representation of planar Lorentz

group.

• topologically massive ( Deser-Jackiw-Templeton :

spin 1

Dµ
νFν ≡

(
−iε ν

µλ Pλ +mδ ν
µ

)
Fν = 0 , (30)

(Fµ) 3 component vector. −iε ν
µλ , i.e.

J+
0 =

 0 0 0
0 0 −i
0 i 0

 J+
1 =

 0 0 i
0 0 0
i 0 0

 J+
2 =

 0 −i 0
−i 0 0
0 0 0


generate 3-D vector representation.
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SUSY unification

Direct sum D1/2 ⊕D1, Lorentz generators

Jµ =

 J−µ | 0
−− | −−
0 | J+

µ

 . (31)

Unified wave function 5-tuplet

Ψ =

 ψa
−−
Fµ

 , (ψa) =

(
ψ1
ψ2

)
, (Fµ) =

 F0
F1
F2

 .
Adding off-diagonal matrices

L1 =
√

2


0 0 | 0 1 i
0 0 | 1 0 0
− − | − − −
1 0 | 0 0 0
0 1 | 0 0 0
0 i | 0 0 0

 ,

L2 =
√

2


0 0 | 1 0 0
0 0 | 0 1 −i
− − | − − −
0 −1 | 0 0 0
−1 0 | 0 0 0
i 0 | 0 0 0

 .
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Completes Lorentz algebra generated by Jµ to

osp(1|2) superalgebra

[Jµ,Jν] = −iεµνλJ λ ,

{LA, LB} = 4(J γ)AB ,

[Jµ, LA] = 1
2(γµ)A

BLB ,

(32)

where (γµ)AB = εBC(γµ)A
C .

Sectors distinguished by reflection operator

R = diag
(
− 12,13

)
, (33)

R2 = 1, {LA, R} = 0 .

Super-Casimir operator

C = JµJ µ −
1

8
LALA = −

3

2
(34)

⇒ osp(1|2) representation is irreducible .
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Original ingredients, (ψa) and (Fµ), recovered

by projecting onto ∓1 eigenspaces of reflection

operator, R. On these subspaces Casimir of

Lorentz subalgebra is

JµJ µ = −α̂(α̂− 1) , α̂ = −
1

4
(3 +R) . (35)

α̂ has eigenvalues α− = −1
2 and α+ = −1 ⇒

Eigenspaces carry irreducible spin-1/2 (Dirac)

and spin-1 DJT representations, respectively.
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Dirac & DJT can be written in same form ,

(PµJ µ − α̂m)Ψ = 0. (36)

Operators LA interchange ψ and F , but do

not preserve physical states ≡ solutions of the

Dirac and DJT eqns. Can be achieved by con-

sidering instead the two supercharges

Q1 =
1

2
√
m

(
L2P+ + L1(mR− P0)

)
, (37)

Q2 =
1

2
√
m

(−L1P− + L2(mR+ P0)), (38)

where P± = P1 ± iP2. Action on spin-1 (Fµ)

and spin-1/2 (ψa) components :

Ψ′ =

(
ψ′a
F ′µ

)
= ζA

(
QAaµFµ
QAµaψa

)
, (39)

where ζA parameters of SUSY transformation.

Two-component Dirac field ψa transformed into

three-component DJT field F ′µ and conversely.

SUSY interchages sectors
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Furthermore,

Dabψ′b = (40)

ζA
(
QAaµ Dµ

νFν +
1

2
√
m
QAa

µ(P2 +m2)Fµ

)
,

Dµ
νF ′ν = (41)

ζA
(
−

1

2
QAµa Dabψb −

1

2
√
m
QAµ

a(P2 +m2)ψa

)
.

Both Dirac & DJT eqns imply Klein-Gordon

eqn (P2 +m2) = 0 ⇒ transformed fields sat-

isfy on shell Dirac & DJT eqns if original ones

satisfy them in reversed order.

N.B. NR limit  centrally extended Super-

Schrödinger symmetry.
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ANYONS

Anyons correspond to irreducible representa-

tions of planar Poincaré group. Characterized

by 2 Casimir invariants

P2 +m2c2 = 0 mass-shell

PµJµ − scm = 0 Pauli-Lubanski
(42)

Jackiw, Nair 1990 combine spin 1 represen-

tation carried by topologically massive (TM)

vector system with fractional spin, carried by

half-bounded representation. JN wave fct is

Fµ(z, x) =
∑
n
fn(z)F

n
µ (x) , (43)

where fn = zn, n = 0,1,2, ..., infinite dimen-

sional orthonormal basis in internal space. Fnµ (x)

is, for each internal index n, a (TM) wave func-

tion.

cf. also Nersessian 1997
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JN describe anyons by Pauli-Lubanski eqn.

(PµJ+
µ − β+m)F = 0 , β+ = α− 1, (44)

F = (Fµ). J+
µ generates direct sum of planar

Lorentz algebras,

J+
µ = J+

µ + jµ, (45)

where (J+
µ )νλ = iεµνλ generates TM, spin 1

repr of Lorentz algebra. jµ, carrying fractional

spin, belongs to discrete series D+
α . J+

µ acts

on vector index of Fµ, jµ acts on internal (frac-

tional) part, labeled by n.

(44) only fixes one Casimir of planar Poincaré

 supplemented by subsidiary conditions . Those

of JN equivalent to

PµFµ = 0 , εµνλPµ jν Fλ = 0 . (46)
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Plyushchay 1991 (44)+(46) imply TM + 2+1D

Majorana-type eqns [seen before for particle

with torsion]

Dµ
νFν ≡

(
−iε ν

µλ Pλ +mδ ν
µ

)
Fν = 0 (47)

(Pµj
µ − αm)F = 0 . (48)

Plyushchay 91 : slightly different approach.

Wave fcts

ψa(x, z) =
∑
n
fn(z)ψ

n
a(x) , (49)

where ψna(x) 2-component “Dirac” [Pauli] spinor.

Posits Dirac + Majorana eqns

D b
a ψb ≡ (Pµγ

µ −m) b
a ψb = 0 , (50)

(Pµj
µ − αm)ψ = 0 . (51)

Eqns (50)-(48) imply

(PµJ−µ − β−m)ψ = 0 , β− = α− 1
2 , (52)

where

J−µ = J−µ + jµ, (53)

(J−µ )a
b = −1

2(γµ)a
b (54)

generate spin 1/2 rep. of planar Lorentz group.
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Relation of two approaches

THM : Jackiw-Nair and Dirac-Majorana ap-

proaches are two facets of the same supersym-

metric system.

Proof : both described by eqns of same form,

D±ψ± = 0, (55)

(Pµjµ − αm)ψ± = 0, (56)

where

D+ = D TM

D− = D Dirac
(57)

cf. eqrefDJT and (50), resp, and put ψ− = ψ

and ψ+ = F .

N.B. : posited first-order eqns imply Klein-Gordon

eqn.
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ψ− and ψ+ fields have fractional spins

β− = α−
1

2
, β+ = α− 1 (58)

shifted by

β− − β+ = 1/2, (59)

& have same masses . Can be unified into su-

permultiplet along same lines as for TM/Dirac :

(PµJ µ − α̂m)Ψ = 0, (60)

(Pµj
µ − αm)Ψ = 0, (61)

J µ = diag(J−µ , J
+
µ ). (62)

Ψ obtained by putting together DM and JN

fields, Ψ =

(
ψ−

ψ+

)
, and α̂ is diagonal operator

diag(α−, α+),

α− = −1
2 for Ψ =

(
ψ−

0

)
,

α+ = −1 for Ψ =

(
0
ψ+

)
.

(60) is SUSY eqn which unifies Dirac & TM,

and is supplemented by Majorana eqn (61).
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