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'D'Hoker, Vinet| PRL 55, 1043 (1985) "dyon” :
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e ORIGIN OF DYNAMICAL SYMMETRY 7

McIntosh-Cisneros, Zwanziger 1968 : scalar

Hamiltonian

w=—1D; D=V —ieA, VxeA = q% monopole.
T

g (half)integer. Fine-tuned inverse-square term
g2 /2r? | cancels effect of monopole ~-

1 12 L2 q2 q2
Ho=-=(0,+= 0 ~ T (e
0 Q(T_I_T) +2’r2+2 r (6)

where Lo = r X w —qgr conserved orbital angular
momentum ~» H-atom-type spectrum

> 2
E — 1 - = ; = 1, o e e 7
Degeneracy half of that of [D=V/,
p2 - q2

[= (0 +lg)(p — lg|) integer !]



Kepler-type dynamical symmetry

Ly = rxm—qr ang mom
KO = %(TFXL()—L0><7T)—(]2/I\'
Runge-Lenz
(8)
Dividing Ko by \/(¢2 — 2H) yields
o(4) e(3) o(3,1) (9)

dynamical symmetry, depending on energy be-
ing smaller/equal/larger as ¢2/2.

e For bound motions

0(4) ~o(3) @ o(3)

= spectrum (7) from representation theory.

e For scattered motions 0(3,1) S-matrix [Zwanziger



e PHYSICAL INTERPRETATION 7

NR limit of Dirac egn. ~» Pauli egn. for spin
1/2 part in Yang-Mills-Higgs field : D; = 9; —
ie[Ai7°]v

iOpp = Hp = (10)
b (72 4 (POTL)2 + o - (B + DO + AT, ) o)

SD 't Hooft-Polyakov monopoles

SU(2) monopole (P, A): static, magnetic (A4g =
0) solution of Bogomolny eqgn

1
Finite-energy condition |[®| — 1,|r] - oo ~
asymptotic Higgs defines mapping Sgo 82,
Winding number m = [®] € 75($2) ~ Z =
topological charge.

Putting A, = &, static, magnetic 3D YMH
(®, A) can be viewed as pure YM (A4,) in R%.
Bogomolny egn (11) becomes self-duality

1
F’L] — Eeijlekl° (12)



Chiral SUSY of Dirac operator

Dirac operator [cf. Wipfilvanov| . . . ]
) = 4Dy, (13)

where ~# Dirac matrices on R?.
¢ ”i 0 Q) _ 0 Py —io -7
Q 0 ) \Plr+io - 0

1 2 T 0
2= (N ) o

Straightforward:

20'Q = »°-D?- |o-(DP+B)

200" = ®2-D?- |- (D> B)

For SD monopole B = D®, thus
Q'Q = 4(®2-D?)-0-B = H
QQRT = (2 - D?) = Hp.
Hamiltonian H=
1.2 (Q'Q 0 \_[(H O
_§¢ _< 0 QQT>_< 0 Ho>' (16)
1

Hq, Hy describe spin 5 particles with anoma-
lous gyromagnetic ratios g = 4 and g = 0.
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Total Hilbert space decomposed into “upper”
and “lower” components,

H="H1 D Ho (17)

eigensectors of chirality operator

r:(‘l O),r| = 1o, | =1, (18)
O 1 Hl HO

Unitary operator

1
U= : H1 — Ho, 19
Q\/H—l 1 0 (19)
UT:U_]'ZL f " Ho — H 20
\/H—lQ 0 1 (20)
Uthou = | —~—q' | (@) [@-—==| = @@ = a1,
QTQ VQTQ

i.e., U, U intertwine Hgy and Hjy,

U'HU = Hy, UH.U' = Hj. (21)
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EOZO

The Hilbert space of a SUSY QM system splits into
the direct sum of two supbspaces. The energy levels
come in pairs, intertwined by an unitary transformation
U. One of the sectors may have a zero-energy ground
state. Its multiplicity is counted by Atiyah-Singer index

theorem.
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If /(1) is eigenvector of Hy,
D = gy,
then, for ¢/(0) = Qy(1),
Hoy'® = (QQN(QyM) =
QAWM = E(QypM) = Ey(®),

Hy

ie., (0 = Qu) is eigenvector of Hy with
same eigenvalue E, provided Qw(l) = 0.

Nonzero energy levels come in pairs.
1
i’ =0 < lﬁ(% )zo. (22)
# solutions of (22) is [Atiyah-Singer (AS) in-

dex.

THM AS index only depends on topology and
not on gauge field. For SD monopole & spin
1/2, AS index is em, topological charge.
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Exporting symmetries

Let Ky constant of motion for Hy dynamics,
[Ho, Ko] = 0.

[H1,QTKoQ] = [QTQ, QTKoQ] =
Q'([QQt, Kol)Q = Q' ([Ho, Kol )Q = 0
l.e.
K1 =U'KqU (23)

conserved for Hy : [Hq1,K1] = 0.

Example: “lower component” of D'H-V, Hglo,
has g = 0 ~» spin uncoupled :

1

trivially conserved.
S, = UTSU = (25)

b (1(71-2 — dNo 4+ d(rx o) — (0 7r)7r>

\ >4
~"

Q)
conserved for Hq. (2 is that of D-V.)

N.B. mixing bosonic and supersymmetries yields
superalgebras.
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Bogomolny-Prasad-Sommerfeld case

BPS monopole “hedgehog”

o 1 ¥ r
¢a:——(coth ——),qu -—<1— )
r ’ r ¢ 6a?'kfr'2 sinhr

m = 1. Manifest spherical symmetry ~~ con-
served total angular momentum, J. UJUT = J
invariant.

For large distances:

a a
q)a_)_x_ (1_1)7 Agﬁeaik%'
T T T
Electric charge operator
xa
Qem = —TTaa (26)

where T, generates su(2). Electric charge

QemW = qWV, [Qema HOO] =0 (27)

electric charge asymptotically conserved .

oy — HPY, Hy— HMICZ1, (28)
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In this limit MICZ Runge-Lenz Ky conserved.
K, = UT(Ko]IQ)U, e, K1 =

q g £}
Kolo+nxo+(-—2)o—(6-B)r—qg——
olo X O (7“ 2)0’ (0‘ )I‘ q2 )

conserved for Hy.

Q
N.B. ' D-V find KPY = K{+¢——.
DHy

All 3 conserved vectors of D-V recovered by

15
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j=3
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j

j

J

Spectrum of Hy (¢ =1/2). For p=1/2, j = 0 one has

zero-energy ground state .




GENERAL PHILOSOPHY

SUSY ALLOWS TO DESCRIBE
“COMPLICATED” SYSTEMS
BY “EXPORTING” SIMPLE ONES

Ut

H1 HO

U

SYMMETRIES OF CAN ALSO BE
"EXPORTED” TO “COMPLICATED”
SECTOR.

BOSONIC SYMMETRIES MIX WITH
SUPERSYMMETRIES TO YIELD
SUPERALGEBRAS

N.B. may or may be related to BOSONS
& FERMIONS
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Dirac & DJT particles in plane

Massive relativistic spinning particles in the plane :

e Dirac: |spin 1/2

D,y = (Puy* — m1) v, = 0 (29)

where ) = (1),) 2-component Dirac spinor. Pla-
nar Dirac [Pauli] matrices

(1 o0 . 0 1 (0 i
Joz(o —1>’ Jl:(—l o>’ J2=<z' o)

generate spin 1/2 representation of planar Lorentz
group.

D,V F, = (—ieu/\ vpA 4 m5uy) F,=0, (30)

(Fu) 3 component vector. —ie Y, i.e.

UA
00 O
J=10o0 —i| Jf=
0 i O '

generate 3-D vector representation.

. OO
oo O
OO =
v

«
V-

Il
7~
ol o
oo |

~
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SUSY unification

Direct sum D/2 @ D!, Lorentz generators

J, | O
=1 — | — |- (31)
o | Jf
Unified wave function 5-tuplet
wa wl FO
w=| 1], <¢a>=<¢ ) E)=| A
F, 2 F

Adding off-diagonal matrices

(0010 1 i)
00| 100
) [y s

Li=v2l 1 4| 9 0 0|
0 1] 0 0 O

\o i | 0 o0 0]

(0 0 |10 0)

0 0 | 0 1 —i

_sl - = - - -
L2=vV2| 4 1 | 09 0 o
1 0 | 0 0 O

\ i o | 00 0]
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Completes Lorentz algebra generated by 7, to
osp(1]2) superalgebra

[j,ua Jv] = _ieul/)\jA7
{LA7 LB} — 4(u7’7)AB ) (32)
[j,ua LA] — %(VM)ABLB )

where (v") ap = ec(7*) A° .

Sectors distinguished by reflection operator
R = diag(—112,]13), (33)
R? = 1,{Ls,R}=0.

Super-Casimir operator

1 3
C=TuI" - 1ALy = —7 (34)

= o0sp(1]|2) representation is irreducible .
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Original ingredients, (v4) and (F}), recovered
by projecting onto 1 eigenspaces of reflection
operator, R. On these subspaces Casimir of
Lorentz subalgebra is

1
" =—-aa-1), a= _Z(3 + R). (35)

& has eigenvalues o = —% and ay = -1 =

Eigenspaces carry irreducible spin-1/2 (Dirac)
and spin-1 DJT representations, respectively.
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Dirac & DJT can be written in same form ,

(P, J" — am)W = 0. (36)

Operators L, interchange ¢ and F', but do
not preserve physical states = solutions of the
Dirac and DJT egns. Can be achieved by con-
sidering instead the two supercharges

1

Q1= 5= (L2Py + La(mR = Fo)) . (37)
Q2 = 5= (~IaP- + La(mR + o)), (38)

where P+ = P; +iP,. Action on spin-1 (F},)
and spin-1/2 (vy,) components :

/I __ % _ A QAaMFu
v=(i )= (Gn) @

where CA parameters of SUSY transformation.
Two-component Dirac field v, transformed into
three-component DJT field F[L and conversely.

SUSY interchages sectors

22



Furthermore,

Dab % — (40)

CA (QAa'u D Fy |+ \;—QAQ'LL(PQ + mz)Flu> :

DV | = (41)
1 a a

CA <_§QA'UJ Dabwb 2\/_QAM (P2 —+ m2)¢a> .

Both Dirac & DJT eqgns imply Klein-Gordon
eqn (P24 m?2) =0 = transformed fields sat-
isfy on shell Dirac & DJT eqgns if original ones
satisfy them in reversed order.

N.B. NR limit ~ centrally extended Super-
Schrodinger symmetry.
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ANYONS

Anyons correspond to irreducible representa-
tions of planar Poincaré group. Characterized
by 2 Casimir invariants

P2 4+ m2c2 =0 mass-shell

PyJt —secm = 0 Pauli-LubanskKi
Jackiw, Nair| 1990 combine Sl represen-
tation carried by topologically massive (TM)

vector system with fractional spin, carried by
half-bounded representation. JN wave fct is

Fu(z,z) =) fn(2)Fj(2) , (43)

(42)

where f, = 2", n = 0,1,2,..., infinite dimen-
sional orthonormal basis in internal space. Fj}(x)
is, for each internal index n, a (TM) wave func-
tion.

cf. also [Nersessian 1997
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JN describe anyons by Pauli-Lubanski egn.

(PHIE —Bim)F =0, By =a—1, (44)

F = (Fu). 3;,," generates direct sum of planar
LLorentz algebras,

IF =7+ (45)

where (J;),* =ien” generates TM, spin 1
repr of Lorentz algebra. j,, carrying fractional
spin, belongs to discrete series D&". J,}" acts
on vector index of F},, j, acts on internal (frac-
tional) part, labeled by n.

(44) only fixes one Casimir of planar Poincaré
~ supplemented by subsidiary conditions. Those
of [JN equivalent to

PFF, =0, " \P,j,F\,=0. (46)
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'Plyushchay 1991 (44)+(46) imply TM + 241D

Majorana-type eqns [seen before for particle
with torsion]

’Dﬂ’/F,/ = (—z’eﬂ)\ v pA -+ méﬂy) F,=0 (47)
(Pyt —am)F =0. (48)

'Plyushchay 91 : slightly different approach.

Wave fcts
Val(z,z) =) fn(2) Y (x), (49)

where /'(x) 2-component “Dirac” [Pauli] spinor.
Posits Dirac + Majorana eqgns

D, = (P — m) by, = 0, (50)
(Pug# —am)yp = 0. (51)
Eans (50)-(48) imply

(Plufj;—ﬁ_m)?ﬁ:O, 5—205_%7 (52)

where
3. =J, + i (53)
(J))a” = =1(v)d” (54)
generate - rep. of planar Lorentz group.
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Relation of two approaches

THM : Jackiw-Nair and Dirac-Majorana ap-
proaches are two facets of the same supersym-
metric system.

Proof : both described by egns of same form,
DEyT =0, (55)
(PHj, — am)y™ =0, (56)

where

DtT= TM

D~ =7D Dirac
cf. eqrefDJT and (50), resp, and put ¢y~ =1
and v = F.

(57)

N.B. : posited first-order eqns imply [Klein=Gordon

eqgn.
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v~ and 7T fields have fractional spins

ﬁ_zoz—l, By =a—1 (58)

2
shifted by
B— — 6—|— — 1/2? (59)

& have same masses. Can be unified into su-
permultiplet along same lines as for TM/Dirac :

(P,J* —am)V = 0, (60)
(Pugt —am)W¥ = 0, (61)
T = diag(3,, 3. (62)

W obtained by putting together DM and JN

fields, W = ( sbb‘k ) and « is diagonal operator
diag(o—, o),

_ 1 _ [ Y
a_ = —5 for \IJ_<O ),

(60) is SUSY egn which unifies Dirac & TM,
and is supplemented by Majorana eqn (61).
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